Implications of the Baltimore Rail Tunnel Fire for Full-Scale Testing of Shipping Casks

Robert J. Halstead
Nevada Agency for Nuclear Projects,
Carson City, NV
Fred Dilger
Clark County Nuclear Waste Division,
Las Vegas, NV

Waste Management ’03
Tucson, AZ
February 25, 2003
Cask Testing Issues

• Absence of Cask Testing Requirements
• Advantages of Full-Scale Testing
• Nevada Proposal for Regulatory Testing
• Baltimore Tunnel Rail Fire (July 2001)
• Proposal for Extra-regulatory Testing
Absence of Cask Testing Requirements

- NRC does not require physical testing
- 16 shipping cask designs currently certified
- No currently certified US cask has been tested full-scale to demonstrate compliance with 10CFR71(drop, puncture, fire, immersion)
- 2 truck cask designs drop-tested using half-scale models (TN-8 & GA-4)
- 3 rail cask designs drop-tested using 1/3- or 1/4-scale models (125-B, NAC-STC, TN-68)
- Scale-model impact limiter tests (9 casks)
Advantages of Full-Scale Testing – 1
(S.E.Gianoulakis, SNL, 1993)

- Single cask can be sequentially subjected to all normal and accident conditions defined by regulations; directly demonstrate compliance
- Clear characterization of package behavior and opportunities for design refinement (also achievable through half-scale model testing)
- Package closure and seal response can be directly measured; results represent actual package containment system response
Advantages of Full-Scale Testing – 2
(S.E.Gianoulakis, SNL, 1993)

• Allows early evaluation and monitoring of fabrication process
• Allows early operational testing
• Direct measurements (acceleration and surface deformation) eliminate need for scaling relationships
• Visual evidence (photos and videos) for system analyses and public demonstration
• Major disadvantage: Cost of fabrication and testing
Nevada Proposal for Regulatory Testing

- Meaningful stakeholder role in development of testing protocols & selection of test facilities and personnel
- Full-scale physical testing (sequential drop, fire, puncture, and immersion) prior to NRC certification
- Additional computer simulations to determine performance in extra-regulatory accidents and to determine failure thresholds
- Reevaluate Modal Study findings, and if appropriate, revise NRC cask performance standards
- Evaluate costs and benefits of destructive testing of a randomly-selected production model cask
Estimated Cost of Nevada Proposal for Regulatory Testing (2003 Dollars)

- Legal-Weight Truck Cask: $7.8-8.4 Million
- First Rail Cask (130 ton): $19.1-22.0 Million
- Subsequent Rail Cask: $9.1-12.0 Million
- Assume one-time cost of $10 Million to upgrade test facility to lift and drop 130 ton cask
Baltimore Tunnel Rail Fire
(July 18-23, 2001)

- CSX freight train derailed in Howard Street Tunnel, Baltimore, MD
- Fire fueled by tripropylene tanker and other flammable cargo
- Fire burned for 3 days, with temperatures as high as 1800°F (1000°C)
- Tunnel is located on potential shipping route from Calvert Cliffs to Yucca Mountain
- USDOT allows SNF shipment in mixed freight trains; DOE may ship in general freight service
Hypothetical SNF Accident
Based on Baltimore Fire

- Nevada commissioned study by Radioactive Waste Management Associates (RWMA)
- Assumed fire at 1500°F (800°C), single large rail cask, 10-year-cooled SNF, PNL gap inventory for Cs-134/137, NUREG/CR-6672 failure threshold for fuel cladding (750°C), actual weather conditions, US Census data (1990,2000)
- Concluded steel-lead-steel cask would have failed after 6.3 hours; monolithic steel cask would have failed after 11-12.5 hours
Consequences of Hypothetical SNF Accident Estimated by RWMA

- 73,000 curies of Cs-134 & Cs-137 released from cask; 50% of release escapes from tunnel and dispersed down-wind as respirable aerosol
- Impacts modeled using RISKIND, HOTSPOT, and RADTRAN economic spreadsheets
- Contaminated Area: 32 square miles (82 sq. km.)
- Latent cancer fatalities: 4,000-28,000 over 50 years (200-1,400 during first year)
- Cleanup cost: $13.7 Billion (2001 Dollars)
Implications of Hypothetical Baltimore Fire Analysis For Cask Testing

• Real world fires could potentially result in significant release of radioactive materials
• Each shipping cask would contain an enormous radionuclide inventory (average rail cask would contain 816,000 curies Cs-137)
• Long-duration, high-temperature fires represent most severe accident environments evaluated by DOE and Nevada
• There is little physical data on rail cask performance in severe accident environments
High-Priority Cask Testing Issues to be Addressed in NRC PPS

• Extent of stakeholder participation
• Selection of cask testing facilities
• Selection of casks to be tested
• Selection of test scenarios
• Availability of funding
• Commitment to testing program