In the Matter of
U.S. DEPARTMENT OF ENERGY
(High-Level Waste Repository)

Docket No. 63-001-HLW
June 10, 2009

CLARK COUNTY, NEVADA’S NEW CONTENTION ARISING FROM THE
DEPARTMENT OF ENERGY’S FEBRUARY 19, 2009
LICENSE APPLICATION UPDATE

Pursuant to 10 CFR § 2.309, the notice published by the Nuclear Regulatory Commission
(“NRC” or “Commission”) at 73 Fed. Reg. 63,029 (October 22, 2008), and the Atomic Safety
Licensing Boards’ (“ASLB”) Order dated March 13, 2009, Clark County, Nevada (“Clark
County”) hereby submits this New Contention Arising from the Department of Energy’s (“the
DOE”) February 19, 2009 License Application Update.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. CONTENTION</td>
<td>1</td>
</tr>
<tr>
<td>CLK-SAFETY-013 - THE DOE’S PROBABILISTIC VOLCANIC HAZARD ANALYSIS UPDATE (PVHA-U) IS INADEQUATE FOR CALCULATING PROBABILITY OF DISRUPTION OF A REPOSITORY AT YUCCA MOUNTAIN BY IGNEOUS EVENTS</td>
<td>2</td>
</tr>
<tr>
<td>III. CONCLUSION</td>
<td>14</td>
</tr>
</tbody>
</table>

ATTACHMENT 1 – Affidavit of Eugene I. Smith
I. INTRODUCTION

On February 19, 2009, the DOE provided updates and supplements to its initial application for construction authorization. Shortly thereafter, the ASLB issued an Order that any new or amended contentions arising from the DOE’s February 19, 2009 updates and supplements “shall be deemed timely if filed within 30 days from the date of the CABs’ [Three Construction Authorization Boards] initial order identifying the parties and admitted contentions.”1 The CABs issued the initial order identifying participants and admitted contentions on May 11, 2009.2 Clark County timely submits this single new contention arising from the DOE’s February 19, 2009 updates and supplements.

CLK-SAFETY-013 states that the DOE’s reliance on its Probabilistic Volcanic Hazard Analysis Update (“PVHA-U”) does not remedy the deficiencies of the Probabilistic Volcanic Hazard Analysis (“PVHA”) as set forth in Clark County’s contentions designated as CLK-SAFETY-003 through CLK-SAFETY-011.3 Clark County, through its expert witness Dr. Eugene I. Smith, hereby submits this new contention asserting that the shortcomings identified in the previously admitted contentions relative to the PVHA remain uncured, and are likewise shortcomings of the PVHA-U.

II. CONTENTION

Clark County’s new contention is as follows:

1 U.S. Dep’t of Energy, Order (Clarifying CAB Case Management Order #1) (March 13, 2009) at 2.

2 U.S. Dep’t of Energy, Memorandum and Order (Identifying Participants and Admitted Contentions), LBP-09-06, 142, May 11, 2009 ("May 11 Order").

3 CLK-SAFETY-003 through CLK-SAFETY-011 have been admitted for adjudication. See May 11 Order at Attachment A.
1. A brief statement of the contention

The DOE’s Yucca Mountain license application was recently amended (License Application Update # 1) and now relies on the Probabilistic Volcanic Hazard Analysis Update (“PVHA-U”) as the basis for calculations of the probability of disruption of a repository at Yucca Mountain by an igneous event. The PVHA-U is inadequate for this purpose because it does not sufficiently integrate a comprehensive, self-consistent geologic model into probability calculations. Furthermore, SAR sections 2.3.11, 2.3.11.1, 2.3.11.2.2, 2.2.2.1.2, 2.2.2.3, 2.2.2.2.3.1 (and similar sections) and the PVHA-U do not adequately address alternative models, modern geophysical surveys, the entire 11 million year history of volcanism in the Yucca Mountain area or the Greenwater Range near Death Valley as part of the volcanic field about Yucca Mountain.

2. A summary of the basis for the contention

The PVHA-U essentially uses a two-dimensional spatial realization to characterize past volcanic events and predict the location of future events. This approach is inadequate because it is not based on the use of a coherent geological and geophysical model to obtain a fundamental scientific understanding of the intrinsically three-dimensional system and its likely evolution over time. Understanding and using a geological and geophysical model is critical for probability studies because it provides information about the source region for magmatism, areas of the lithosphere and asthenosphere where magma may reside, and flow patterns in the mantle. Although geophysical studies are mentioned in SAR subsection 2.2.2.1.2 as a way to identify and
characterize the orientation of faults in the subsurface, the license application lacks geophysical data to substantiate models proposed by the DOE that use upper crustal structure and the local stress field to explain the location of volcanoes in the Yucca Mountain area. Geophysical studies are also critical for testing and comparing deep versus shallow melting models by revealing the location of low-viscosity zones (hot or wet zones) in the crust and mantle that might contain magma or rock close to the melting temperature. Furthermore, identifying patterns of mantle circulation and the nature of the topography at the base of the lithosphere is important for describing the geometry of volcanic source zones which ultimately control the location and shape of volcanic fields at the surface.

3. **A demonstration that the contention is within the scope of the hearing**

 This contention raises the issue of whether the DOE has complied with the NRC requirements applicable to Yucca Mountain and falls within the scope of the hearing as specified in section II, paragraph 1 of the Notice of Hearing. Additionally, this contention applies the substance of CLK-SAFETY-003 through CLK-SAFETY-011 to the Amended License Application and its reliance on the PVHA-U. (These contentions were admitted by the CABs, but primarily addressed the PVHA because they predated the DOE’s amended License Application and its reliance on the PVHA-U).

4. **A demonstration that the contention is material to the findings the NRC must make to license Yucca Mountain**

 10 CFR § 63.31(a)(2) states that the NRC may authorize issuance of a construction authorization for Yucca Mountain if it determines that there is reasonable assurance or expectation that the materials described in the Application can be disposed of without
unreasonable risk to the health and safety of the public. In reaching this determination, 10 CFR § 63.31(a)(3) requires that the application satisfy the requirements in 10 CFR § 63.21, and that the site and design comply with Subpart E of 10 CFR Part 63. Further, 10 CFR § 63.21(c)(9) requires an assessment to determine the degree to which features, events and processes of the site that are expected to materially affect compliance with section 63.113 have been characterized, and subsection (c)(15) requires adequate support for the models used to provide the information required in subsection (c)(9). Section 63.114 (part of Subpart E) requires a performance assessment to be completed to evaluate the ability of the engineered barrier system along with natural barriers to meet the performance objectives of section 63.113. This performance assessment must include consideration of the probability and consequences of events and processes identified under 10 CFR § 63.21(c)(9).

The contention alleges non-compliance with these regulatory provisions. The contention challenges the DOE’s reasonable assurance and expectation allegations and thus raises matters that are material to the findings that the Commission must make in order to be able to lawfully license Yucca Mountain.

5. **A concise statement of facts or expert opinions supporting the contention, along with appropriate citations to supporting scientific or factual materials**

Understanding the process of volcanism within the framework of a three-dimensional view of the volcanic system and its evolution in time is needed to make meaningful calculations of the probability of disruption of a repository at the Yucca Mountain site by volcanism. Although the PVHA-U uses different statistical techniques and includes some new data that was obtained after the 1996 release of the original PVHA, the PVHA-U still does not include a
comprehensive and coherent model for volcanism to provide a three-dimensional view of the localization of volcanoes and volcanic fields.

Moreover, License Application Update #1 continues to rely heavily on the original PVHA, only briefly mentioning the PVHA-U in terms of amending probability estimates. As a result, Clark County’s contentions CLK-SAFETY-003 to CLK-SAFETY-011 apply to the PVHA-U and License Application Update #1 since neither the PVHA-U nor License Application Update #1 have in any way cured the deficiencies identified in those original contentions. Accordingly, the PVHA-U is inadequate to support License Application Update #1 because it suffers from the same inadequacies that plague the PVHA. Several of those inadequacies are further explained below.

Lack of Consideration of Alternative Models:

In the PVHA-U, the DOE asserts that it properly considered alternative models for volcanism, but it did not in fact do so. The DOE’s probability calculations focus on the observed spatial distribution of volcanoes in the Yucca Mountain area without properly integrating a geologic and geophysical model to describe how that distribution arose. This results in an inadequate basis for assessing the future spatial and temporal patterns of volcanic activity in the area. The DOE admits that it lacks the geophysical perspective to develop a three-dimensional view of the lithosphere and mantle required to characterize zones beneath the Yucca Mountain area that are close to the melting point:

Developing a best estimate of spatial density is problematic because we have only one realization of the underlying statistical process—that is, the distribution of past volcanic events—and we cannot repeat geologic experiments in a natural system. Ideally, we would have a complete geophysical model for events. If we knew the distribution of melt in the asthenosphere and lithosphere, and knew the state of the lithosphere through which magma would rise, we could better predict where volcanoes likely will form next. We lack such a complete geophysical perspective, however. Some data, for example seismic tomographic models of “slowness” in the
lithosphere and asthenosphere, give an idea of where partial melting of the mantle might occur (e.g., Zhao, 2001; Humphries, personal communication).4

The DOE further asserts that the PVHA-U gave adequate consideration of alternative models. For example:

Dr. Coppersmith stated that Dr. Eugene Smith (University of Nevada, Las Vegas) had developed an alternative model for assessing future volcanism in the Yucca Mountain region. Although asked to present his model at the workshop, Dr. Smith declined because of policy considerations, so Dr. Coppersmith briefly summarized the key aspects of the model. In this model, volcanoes in Crater Flat are considered to be part of a larger zone of basaltic volcanism that stretches from Death Valley to the Lunar Crater field in the northeast. Volcanism within this zone is characterized by coeval and episodic periods of activity. An area of deep, hot mantle may underlie the entire zone. If this hypothesis is correct, then the higher recurrence rates for volcanism observed in Lunar Crater and the Reveille Range may apply to the Yucca Mountain area. Following Dr. Coppersmith’s summary, the project team discussed the spatial distribution of volcanic centers and the evidence for shallow versus deep melting in the defined zone.5

This is one of the few times alternative models are mentioned in the PVHA-U. This example essentially admits and identifies the inadequacy of the DOE’s approach, and most certainly does not cure that inadequacy. Thus, Clark County’s contentions CLK-SAFETY-003, 005 and 009 apply to the PVHA-U just as they apply to the PVHA.

The DOE also claims that the PVHA-U panel did not rely on upper crustal models but considered a range of models, including deep melting. Clark County agrees that the PVHA-U experts were introduced to alternative models. In fact, the alternative models of Clark County’s expert (Eugene Smith) were presented to the PVHA-U experts by Dr. Kevin Coppersmith. The PVHA-U experts, although introduced to various melting models, however, qualitatively adopted the DOE model of shallow melting while never quantitatively integrating it into their models. All of the PVHA-U experts accepted the DOE’s interpretation that volcanic activity decreasing in volume and number of events over the last 5 million years was an indicator of a future marked

4 “Probabilistic Volcanic Hazard Analysis Update (“PVHA-U”) for Yucca Mountain, Nevada Rev 01” (09/02/2008), LSN# DEN001601965, at D-20.

5 Id. at C-22.
by a low probability for future eruptions in the area relevant to the proposed repository. While mentioning the concept of asthenospheric melting in the PVHA-U report, none of the experts considered the consequences of deep melting in probability calculations. In fact, every expert based probability calculations on vent location, number of events, dike dimensions and orientation and their interpretation of a region of interest. None of the experts quantitatively considered the effects of a petrologic model in their probability estimates. This omission is a major problem with the PVHA-U report.

Lack of Consideration of the Entire Volcanic Record:

The PVHA-U relies heavily on volcanic events that have occurred in the last 5 million years. Although some of the PVHA-U experts did include events earlier than 5 million years in their probability models, none considered long term trends or patterns of volcanism. The philosophy of using data from post-5 million year old basalt is also evident in supporting publications (*e.g.*, Valentine and Perry, 2007). The analysis in that paper uses geochemical indices that reflect the degree of partial melting of the mantle and shows that in the last 5 million years basaltic volcanism occurred within a trend of a steady decrease in the degree of partial melting. This evidence was used to suggest that basaltic volcanism in the Yucca Mountain area is dying and that future events will be rare.

Clark County does not disagree that the degree of partial melting is decreasing. But, if the full 11 million year record is considered, two such trends are evident (see CLK-SAFETY-004 and 008). This evidence indicates that volcanism is periodic, thus raising the possibility of another peak of activity in the future. If the DOE had looked at the entire record using the same techniques that they used for the post-5 million year period, they would have observed the same trends. Unfortunately, the DOE decided not to do so.

6 *See e.g.*, Valentine, G.A. and Perry, F.V. “Tectonically Controlled, Time-Predictable Basaltic Volcanism from a Lithospheric Source,” at 201-16 (2007), LSN# DN2002382703.
A Larger Volcanic Field about Yucca Mountain:

The PVHA-U does not adequately consider the Greenwater Range near Death Valley in the probability analysis. Clark County’s reasoning for including the Greenwater Range is provided in CLK-SAFETY-006 and is summarized below.

1. The DOE must consider all volcanic fields within a 50 km radius of Yucca Mountain in their volcanic hazard analysis. The Greenwater Range lies within 50 km of Yucca Mountain. As stated in NRC Yucca Mountain Review Plan (NUREG-1804, Revision 2), Review Method 2, probability Criteria, page 2.2-11:

 Verify that probability estimates for future igneous events have considered past patterns of igneous events in the Yucca Mountain region. Evaluate the adequacy and sufficiency of the U.S. Department of Energy characterization and documentation of past igneous activity. This should include uncertainties about the distribution, timing, and characteristics of past igneous activity. **Confirm that, at a minimum, documentation of past igneous activity, since about 12 million years ago, encompasses the area within about 50 kilometers (30 miles) of the proposed repository site.** Give particular attention to the documentation of the locations, ages, volumes, geochemistry, and geologic settings of less than 6-million-year-old basaltic igneous features, such as cinder cones, lava flows, igneous dikes, and sills. Verify that the U.S. Department of Energy used geological and geophysical information relevant to past igneous activity contained in the literature. (emphasis added).

2. The basalts of the Greenwater Range are identical in chemistry, age and mineralogy to those near Yucca Mountain. This information, as set forth in Clark County’s original contention, is summarized below:

 - Volcanic activity in the Greenwater Range is associated with at least 24 volcanic centers and occurred after about 5 million years ago, contemporaneous with activity near Yucca Mountain.\(^7\)

 - Basalt from Death Valley is very similar in major and trace element chemistry to basalt from Crater Flat. Trace-elements usually better characterize volcanic rocks than do major elements and are considered as fingerprints that are commonly used to correlate volcanic rocks from area to area. For comparison purposes, volcanic rocks are usually normalized to a standard rock like average ocean island basalt. Plots of trace elements versus normalized concentration show characteristic patterns that can be used to fingerprint and compare rocks from different volcanic fields. Comparing Death Valley and Crater Flat basalt on such a plot shows that

\(^7\) See “Geologic Map of California – Death Valley Sheet, with Index and Stratigraphic nomenclature” (01/01/1974), LSN# DN2001741565, solo page.
they share a similar pattern. Especially characteristic is low Nb and high Rb, Th and U.8

- Strontium (Sr) and neodymium (Nd) isotopes for Greenwater Range basalts9 are identical to isotopic analyses from Crater Flat Basalts in both areas have low epsilon Nd values (between -9.95 and -12), and high $^{87}\text{Sr}/^{86}\text{Sr}$ (0.7069-0.7073).10

- Basalts in both the Crater Flat and Death Valley areas are similar in mineralogy and contain olivine as the major phenocrysts phase. Plagioclase is rare and usually occurs as microlites in the matrix.

In summary, the close geographic proximity to Crater Flat, similar age of eruption, similar mineralogy and major element chemistry, distinctive trace element patterns and distributions, and identical isotopic ratios demonstrate that Death Valley basalt in the Greenwater Range is closely associated with Yucca Mountain basalt. Hazard assessment for Yucca Mountain should consider the Greenwater volcanoes near Death Valley as part of a field of volcanoes about Yucca Mountain.

3. The probability of volcanic disruption of the Yucca Mountain repository block will increase by considering the Greenwater Range. The probability calculation is dependent on both the number of events (volcanoes) and the area selected to count the volcanoes. In its simplest form, the equation (“Equation 1”) for the probability that an igneous event will intersect the repository is:

$$v_I = \frac{N(R,T)}{T} \cdot \frac{A_r}{A_R}$$

Equation 1 relates the probability of repository intersection v_I to the number of volcanoes (N) in area R during time T. A_r is the area of the region used to count volcanoes, a_r is the area of the repository block.11 Equation 1 indicates that the probability of disruption of the repository will be larger if the number of cones in the area of interest (R) is larger. However, the probability will decrease as the region used to count cones becomes larger. Clark County estimates that by including the Greenwater Range, R will increase by a factor of about 0.33 but cone counts (N) will increase by at least 24 (a factor of 2 to 3 over cone counts used by PVHA experts). Although the larger area used to count will

10 See Report, supra, n.8.

11 Equation from PVHA report page 3-2 of 115.
partially balance the increase in cone counts, the overall probability will increase (because the cone count term increases more than the area of the region).

The PVHA-U experts were provided with a map showing the locations of volcanic centers in the Yucca Mountain area including the Greenwater Range. It is Clark County’s contention that, for the Greenwater Range, the volcano locations and number of volcanoes provided to the PVHA-U experts are incorrect.

The basis for this contention is that the reference on the map provided to the PVHA experts is Luedke and Smith (1981). This map shows the distribution of volcanic rocks of various ages and the location of calderas and selected volcanoes. The distribution of volcanic rocks and volcano locations for the Greenwater Range were taken from two maps by McAllister and a U.S. Geological Survey Professional Paper by Drewes. These maps and report were produced to describe the borate deposits east of Death Valley, but also included a reconnaissance version of the geology of the Greenwater Range. The basalts of the Greenwater Range were mapped as Funeral Formation and separated into lava flows and areas of scoria. Vent locations were not specifically located but were interpreted to lie within areas of scoria. Drewes, however, did identify two areas of volcanic breccia as eroded volcanoes. Luedke and Smith compiled the geology from the McAllister and Drewes maps and placed volcanic centers in the Greenwater Range based on the distribution of scoria and the location of Drewes’ two volcanoes. The important point is that most of the volcano locations in the Greenwater Range on

13 James F. McAllister, Geologic map and sections of the Furnace Creek borate area, Death Valley, Inyo County, California: California Division of Mines and Geology Map Sheet MS-14 (1970); James F. McAllister, Geologic map and sections of the Amargosa Valley borate area-southeast continuation of the Furnace Creek area-Inyo County, California: U.S. Geological Survey Miscellaneous Geologic Investigations Map 1-782, scale 1:24000, 1 sheet (1973).
15 See Luedke and Smith, Map, supra, n.12.
the Luedke and Smith map are based on interpretation; they did not field check to verify their presence. For the purpose of the PVHA, a part of the Luedke and Smith map was redrafted to show only the location of volcanoes. On this map, the volcano locations were only approximately located and the PVHA-U was copied from that map. Both maps are inaccurate because they contain propagated errors induced in the process of copying information from earlier maps to new maps.

In conclusion, the maps provided to the PVHA and PVHA-U are not precise in terms of the number of volcanoes or their locations. The PHVA-U panel of experts was provided with a poor if not incorrect dataset.

Lack of Modern, High-Quality Geophysical Data:

Developing a three-dimensional model of volcano locations requires modern high quality geophysical data. The most valuable type of data relates to the velocity of seismic waves in the lithosphere and mantle beneath volcanic fields. Low-velocity zones reflect rock near the melting point due either to high temperature or elevated water content. Clark County agrees that some geophysical data was provided to both the PVHA and PVHA-U experts. The quality of these data can best be judged by several quotes from PVHA-U experts who are experienced in geophysical techniques. Dr. Charles Connor, a member of the PVHA-U panel and a professor of geology and geophysics at the University of South Florida stated in his PVHA-U elicitation report:

As early as 1994, requests were made for detailed seismic tomographic studies in the YMR to assist with assessing volcanic hazards (Connor and Sanders, 1994). It is extremely unfortunate that no studies have been done. *The seismic tomographic data that are available are low in resolution and open to interpretation* (Biasi, oral communication at PVHA Workshop 1; Humphreys, personal communication). Although seismic tomographic anomalies appear to exist beneath Crater Flat and extend beneath Yucca Mountain, the DOE has not studied
the YMR at the resolution available from, for instance, Northern Honshu, where such data are used in assessing potential sites for geologic high-level waste repositories (e.g., Martin et al., 2004). I include no tomographic data in this analysis because of the low quality of available data. If high-resolution seismic tomographic data were available, the results of this hazard assessment could change considerably.

Dr. Connor also states:

Volcanic hazards at YM will likely be reassessed in the future using improved information, and this information may change the hazard assessment. Furthermore, there are techniques currently extant in the scientific community that have not been used at YM to assess volcanic hazards. For example, seismic tomography and magnetotellurics are two techniques that are used in Japan to assess long term volcanic hazards for potential HLW geologic repositories (Martin et al., 2004; Umeda et al., 2006). Seismic tomography has revealed that along-arc variations in mantle P- and S-wave velocity correlates well with rates of volcanic activity. These data have been integrated into improved probabilistic volcanic hazard assessments. Magnetotellurics has been used to identify mid- to lower-crust magma bodies in the back-arc of Japan, in a region where no volcanism has occurred since the Mesozoic. Umeda et al. (2006) consider this to be evidence of potential future volcanic unrest, which should be factored into probabilistic assessments. These state-of-the-art geophysical surveys have not been done at Yucca Mountain. Some seismic tomography analysis has been performed and presented to the PVHA panel (Biasi, PVHA presentation, Humphries, written communication), but not with a sufficiently dense network of sensors or in a dedicated experiment.

In addition, Dr. Bruce Crowe, a member of both the PVHA and PVHA-U panel and an expert in volcanology and geophysics stated: “I examined but did not use the teleseismic tomography data for assigning frequency zones because of low resolution, coarse grid size, and ambiguous interpretations.” Thus, two of the DOE’s own experts found that the geophysical data provided was low-resolution and not suitable for use in their probability models.

Geophysical data was given low weight by the PVHA panel but several of the PVHA-U experts did use the teleseismic tomography data provided to them in their models. Modern seismic tomography data is available for the Yucca Mountain area through the EarthScope

16 PVHA-U, at D-33 (emphasis added).
17 Id. at D-2 and D-3 (emphasis added).
18 Id. at D-100.
project. For example, geophysicists at Brown University and the University of Colorado have generated tomographic profiles that cross near or through the Yucca Mountain area. Data such as these should be used to test all available depths of melting models.

6. Sufficient information to show a genuine dispute with the DOE, along with specific references to the portions of the Application being controverted

This contention challenges the adequacy of the PVHA-U and SAR sections 2.3.11, 2.3.11.1, 2.3.11.2.2, 2.2.2.1.2, 2.2.2.3, 2.2.2.2.3.1 (and similar sections) for use in calculating the probability of disruption of a repository at Yucca Mountain by an igneous event. Supporting reasons are provided in section 5 above and are summarized as follows: Despite the use of new statistical techniques in the PVHA-U, it relies on a two-dimensional realization of volcano locations. In other words, disruption probability is calculated solely on the basis of the spatial distribution of volcanoes. This approach is inadequate because it is not based on the use of a coherent geological and geophysical model to obtain a fundamental scientific understanding of the intrinsically three-dimensional system and its likely evolution in time. Understanding and using a geological and geophysical model is critical for probability studies because it provides information about the source region for magmatism, areas of the lithosphere and asthenosphere where magma may reside, and flow patterns in the mantle. Modern seismic studies that show velocity profiles to depths of 150 kilometers and outline zones of the earth’s mantle that are near the melting temperature are available but were not provided to the PHVA-U experts. Furthermore neither the PVHA-U nor License Application Update #1 adequately consider the entire 11 million year long history of volcanism near Yucca Mountain. The PVHA-U relies heavily on volcanic events that have occurred in the last 5 million years. Although some of the

PVHA-U experts did include events earlier than 5 million years in their probability models, none considered long term trends or patterns of volcanism. Finally, The PVHA-U does not adequately consider the Greenwater Range near Death Valley in the probability analysis.

III. CONCLUSION

For the foregoing reasons the LA should be denied. Clark County respectfully petitions the Presiding Officer to accept the additional contention raised herein.

Dated: June 10, 2009

Respectfully submitted,

/s/ filed electronically
Alan I. Robbins
Debra D. Roby
Bryce C. Loveland
Jennings Strouss & Salmon, PLC
1700 Pennsylvania Ave, NW, Ste. 500
Washington D.C., 20006
telephone: (202) 464-0539
e-mail: arobbins@jsslaw.com
e-mail: droby@jsslaw.com
e-mail: bloveland@jsslaw.com

Attorneys for Clark County, Nevada
UNITED STATES OF AMERICA
NUCLEAR REGULATORY COMMISSION

In the Matter of:

U.S. DEPARTMENT OF ENERGY

(High Level Waste Repository)

Docket No. 63-001-HLW

CERTIFICATE OF SERVICE

I hereby certify that copies of the foregoing “Clark County, Nevada’s New Contention Arising From the Department of Energy’s February 19, 2009 License Application Update,” dated June 10, 2009, was served upon the following persons by Electronic Information Exchange.

U.S. Nuclear Regulatory Commission
Atomic Safety and Licensing Board
Mail Stop T-3F23
Washington, DC 20555-0001

CAB 01
William J. Froehlich, Chair
Administrative Judge
wif1@nrc.gov

Thomas S. Moore
Administrative Judge
tsm2@nrc.gov

Richard E. Wardwell
Administrative Judge
rew@nrc.gov

CAB 02
Michael M. Gibson, Chair
Administrative Judge
mmg3@nrc.gov

Alan S. Rosenthal
Administrative Judge
amr@nrc.gov or rsnthl@verizon.net

Nicholas G. Trikouros
Administrative Judge
ngt@nrc.gov

CAB 03
Paul S. Ryerson, Chair
Administrative Judge
psr1@nrc.gov

Michael C. Farrar
Administrative Judge
mcf@nrc.gov

Mark O. Barnett
Administrative Judge
mob1@nrc.gov or mark.barnett@nrc.gov
Nevada Agency for Nuclear Projects
Nuclear Waste Project Office
1761 East College Parkway, Suite 118
Carson City, NV 89706
Steve Frishman, Tech. Policy Coordinator
steve.frishman@gmail.com
Susan Lynch, Administrator of Technical Programs
szeee@nuc.state.nv.us

Counsel for Lincoln County, Nevada
1100 S. Tenth Street
Las Vegas, NV 89017
Bret Whipple, Esq.
baileys@lcturbonet.com or bretwhipple@nomademail.com

For Lincoln County, Nevada
Intertech Services Corporation
PO Box 2008
Carson City, NV 89702
Mike Baughman, Consultant
bigboff@aol.com

Counsel for the State of Nevada
Egan, Fitzpatrick, Malsch & Lawrence, PLLC
12500 San Pedro Avenue, Suite 555
San Antonio, TX 78216
Charles J. Fitzpatrick, Esq.
cfitzpatrick@nuclearlawyer.com
John W. Lawrence, Esq.
jlawrence@nuclearlawyer.com
Laurie Borski, Paralegal
lborski@nuclearlawyer.com

Bureau of Government Affairs
Nevada Attorney General
100 N. Carson Street
Carson City, NV 89701
Marta Adams, Chief Deputy Attorney General
madams@ag.nv.gov

Lincoln County Nuclear Oversight Program
P.O. Box 1068
Caliente, NV 89008
Connie Simkins, Coordinator
jcciac@co.lincoln.nv.us

Lincoln County District Attorney
P.O. Box 60
Pioche, NV 89403
Gregory Barlow, Esq.
lcda@lcturbonet.com

Counsel for Nye County, Nevada
Ackerman Senterfitt
801 Pennsylvania Avenue, NW, #600
Washington, DC 20004
Robert Andersen, Esq.
robert.andersen@akerman.com
Nye County Regulatory/Licensing Advisor
18160 Cottonwood Rd. #265
Sunriver, OR 97707
Malachy Murphy, Esq.
mrmurphy@chamberscable.com

Clark County, Nevada
500 S. Grand Central Parkway
Las Vegas, NV 98155
Elizabeth A. Vibert, Deputy District Attorney
VibertE@co.clark.nv.us
Phil Klevorick, Sr. Mgmt Analyst
klevorick@co.clark.nv.us

Counsel for Clark County, Nevada
Jennings, Strouss & Salmon
1700 Pennsylvania Avenue, NW, Suite 500
Counsel for Clark County, Nevada
Jennings, Strouss & Salmon
8330 W. Sahara Avenue, #290
Las Vegas, NV 89117
Bryce C. Loveland, Esq.
bloveland@jsslaw.com

Counsel for Nye County, Nevada
530 Farrington Court
Las Vegas, NV 89123
Jeffrey VanNiel, Esq.
nbrjdvn@gmail.com

Nye County Nuclear Waste
Repository Project Office (NWRPO)
1210 E. Basin Road, #6
Pahrump, NV 89060
Sherry Dudley, Admin. Technical Coordinator
sdudley@co.nye.nv.us
Zoie Choate, Secretary
zchoate@co.nye.nv.us

Eureka County Public Works
P.O. Box 714
Eureka, NV 89316
Ronald Damele, Director
rdamele@eurekanv.org

For Eureka County, Nevada
NWOP Consulting, Inc.
1705 Wildcat Lane
Ogden, UT 84403
Loreen Pritchford, Consultant
lpitchford@comcast.net

Counsel for Churchill, Esmeralda, Lander, and Mineral Counties, Nevada
Armstrong Teasdale, LLP
1975 Village Center Circle, Suite 140
Las Vegas, NV 89134-6237
Robert F. List, Esq.
rlist@armstrongteasdale.com
Jennifer A. Gores, Esq.
jgores@armstrongteasdale.com

White Pine County, Nevada
Office of the District Attorney
801 Clark Street, #3
Ely, NV 89301
Richard Sears, District Attorney
rwsears@wpcde.org

For White Pine County, Nevada
Intertech Services Corporation
PO Box 2008
Carson City, NV 89702
Mike Baughman, Consultant
bigboff@aol.com

Esmeralda County Repository Oversight Program
Yucca Mountain Project
PO Box 490
Goldfield, NV 89013
Edwin Mueller, Director
muellered@msn.com

White Pine County Nuclear Waste Project Office
959 Campton Street
Ely, NV 89301
Mike Simon, Director
wpnucwst1@mwpower.net

Counsel for Inyo County, California
Greg James, Attorney at Law
710 Autumn Leaves Circle
Bishop, CA 93514
Greg James, Esq.
gljames@earthlink.net
Attorney for the County of Inyo
233 East Carrillo Street Suite B
Santa Barbara, California 93101
Michael C. Berger, Esq.
mberger@bsglaw.net
Robert S. Hanna, Esq.
rshanna@bsglaw.net

California Department of Justice
300 S. Spring Street, Suite 1702
Los Angeles, CA 90013
Brian Hembacher, Deputy Attorney General
brian.hembacher@doj.ca.gov

Nuclear Energy Institute
Office of the General Counsel
1776 I Street, NW Suite 400
Washington, DC 20006-3708
Ellen C. Ginsberg, General Counsel
ecg@nei.org
Michael A. Bauser, Deputy General Counsel
mab@nei.org
Anne W. Cottingham, Esq.
awc@nei.org

California Department of Justice
Office of the Attorney General
1515 Clay Street, 20th Floor
P.O. Box 70550
Oakland, CA 94612-0550
Timothy E. Sullivan, Deputy Attorney General
timothy.Sullivan@doj.ca.gov

California Energy Commission
1516 Ninth Street
Sacramento, CA 95814
Kevin W. Bell, Senior Staff Counsel
kwbell@energy.state.ca.us

Counsel for the Nuclear Energy Institute
Counsel for the Nuclear Energy Institute
Winston & Strawn LLP
1700 K Street, N.W.
Washington, DC 20006-3817
David A. Repka, Esq.
drepka@winston.com
William A. Horin, Esq.
whorin@winston.com
Rachel Miras-Wilson
rwilson@winston.com
Carlos L. Sisco, Senior Paralegal
csisco@winston.com

Native Community Action Council
P.O. Box 140
Baker, NV 89311
Ian Zabarte, Member of Board of Directors
mrizabarte@gmail.com
Counsel for Timbisha Shoshone Tribe
Fredericks, Peebles, & Morgan LLP
1001 Second St.
Sacramento, CA 95814
Darcie L. Houck, Esq.
dhouch@ndlaw.com
John M. Peebles, Esq.
jpeebles@ndlaw.com
Timbisha Shoshone Yucca Mountain Oversight Program Non-Profit Corporation
3560 Savoy Boulevard
Pahrump, NV 89061
Joe Kennedy, Member of Board of Directors and Executive Director
joekennedy08@live.com
Tameka Vazquez, Bookkeeper
purpose_driven12@yahoo.com

Counsel for Timbisha Shoshone Yucca Mountain Oversight Program Non-Profit Corporation

Godfrey & Kahn, S.C.
One East Main Street, Suite 500
P.O. Box 2719
Madison, WI 53701-2719
Douglas M. Poland, Esq.
dpoland@gklaw.com
Steven A. Heinzen, Esq.
sheinzen@gklaw.com
Hannah L. Renfro, Esq.
hrenfro@gklaw.com
Jacqueline Schwartz, Parlegal
jschwartz@gklaw.com
Julie Dobie, Legal Secretary
jdobie@gklaw.com

Counsel for Timbisha Shoshone Yucca Mountain Oversight Program Non-Profit Corporation

Inyo County Yucca Mountain Repository Assessment Office
P.O. Box 367
Independence, CA 93526-0367
Alisa M. Lembke, Project Analyst
alembke@inyocounty.us

Counsel for the Native Community Action Council
Alexander, Berkey, Williams & Weathers LLP
2030 Addison Street, Suite 410
Berkeley, CA 94704
Curtis G. Berkey, Esq.
cberkey@abwwlaw.com
Rovianne A. Leigh, Esq.
rleigh@abwwlaw.com
Scott W. Williams, Esq.
swilliams@abwwlaw.com
/s/ Filed Electronically
Alan I. Robbins
Jennings, Strouss & Salmon, PLC
1700 Pennsylvania Ave, NW
Suite 500
Washington, D.C. 20005
Tel: (202) 464-0539
e-mail: arobbins@jsslaw.com
ATTACHMENT 1

Affidavit of Eugene I. Smith
UNITED STATES OF AMERICA
NUCLEAR REGULATORY COMMISSION

ATOMIC SAFETY AND LICENSING BOARD

In the Matter of:

U.S. DEPARTMENT OF ENERGY

(High Level Waste Repository)

Docket No. 63-001

DECLARATION OF EUGENE I. SMITH

1. My name is Eugene I. Smith. I am a professor of Geology at the University of Nevada, Las Vegas. My contact information is provided in my curriculum vitae, which is attached.

2. I specialize in Volcanology, Igneous Petrology, Geochemistry, Tectonics, and Planetary Geology. A copy of curriculum vitae is attached.

3. I have reviewed and am familiar with aspects of the Department of Energy's license application for this proceeding, including the DOE's Environmental Impact Statements and Update No. 1 of the LA.

4. I support Clark County's petition in this proceeding, and adopt as my own the opinions and statements expressed in contention CLK-SAFETY-013. Said contention was prepared by me or under my supervision, and the factual matters and expert opinions presented therein reflect my professional work and expert opinions.

STATE OF NEVADA) ss.
COUNTY OF CLARK) ss.

Eugene I. Smith

SUBSCRIBED AND SWORN to before me this 1st day of June, 2009.

[Signature]
Notary Public, in and for said County and State
Clark, NV

[Notary Seal]
CURRICULUM VITAE
EUGENE I. SMITH

November 1, 2008

Mailing Address: Department of Geoscience
University of Nevada (UNLV)
Las Vegas, Nevada 89154-4010

gene.smith@unlv.edu

Telephone: office: (702) 895-3971
FAX: (702)) 895-4064

Educational Background:

<table>
<thead>
<tr>
<th>University</th>
<th>Degree</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of New Mexico</td>
<td>Ph.D.</td>
<td>1970</td>
</tr>
<tr>
<td>University of New Mexico</td>
<td>M.S.</td>
<td>1968</td>
</tr>
<tr>
<td>Wayne State University</td>
<td>B.S.</td>
<td>1965</td>
</tr>
</tbody>
</table>

Specialties: Volcanology, Igneous Petrology, Geochemistry, Tectonics, Planetary Geology

Professional Experience:

8/88 to present: Professor of Geology, UNLV

7/83-7/86: Chair, Department of Geoscience, UNLV

9/80 to 8/88: Associate Professor of Geology, UNLV

9/76-8/80: Associate Professor of Earth Science, University of Wisconsin-Parkside

9/72-9/76: Assistant Professor of Earth Science, University of Wisconsin-Parkside

9/70-6/72: Post-doctoral Research Associate to Professor W.E. Elston, Department of Geology, University of New Mexico

9/68-8/70: Graduate Research Assistant to Professor W.E. Elston, Department of Geology, University of New Mexico

6/64-9/64: Undergraduate Research Assistant to Professor A.J. Mozola, Department of Geology, Wayne State University, Detroit, MI

Professional Society Memberships:

American Association for the Advancement of Science
American Geophysical Union
Geological Society of America (Fellow)
Geological Society of Nevada
IAVCEI-International Association of Volcanology and Chemistry of the Earth’s Interior
Mineralogical Society of America
Phi Kappa Phi
Sigma Gamma Epsilon
Sigma Xi

Grants:

- Bureau of Land Management contract to study the geology of the Sloan Canyon NCA (2006-2008).
- Bureau of Land Management contract to study the geology of the Sloan Canyon NCA (2005)
- UNLV Research Council grant to support the study of Tertiary volcanic rocks in Clark County, Nevada (1983).
- NASA Grant NGR 50-009-001 for the study of volcanic fields in California, New Mexico and Wisconsin. The grant also funded the study of volcanic domes and craters on Mars, Mercury, Moon and Earth (6 years of funding)(1973-1979).
- Four University of Wisconsin research grants to support the study of Precambrian igneous rocks of south-central Wisconsin (1973-1977).
Awards:

- Recipient of UNLV College of Sciences Distinguished Researcher Award, 1999.
- National Defense Education Act (NDEA) Title IV Fellowship, 9/65-6/68

Current Research:

2. Volcanic hazard studies related to placing a nuclear waste repository at Yucca Mountain, Nevada.
3. Geology of basalts in the Yellowstone Plateau volcanic field, implications for the future development of the Yellowstone volcanic system.
4. Geochemical, structural and field study of the volcanic and plutonic rocks of the Lake Mead Volcanic Field.
5. The formation of intermediate composition igneous rocks in an extensional environment.

Editorial Responsibilities

- Associate editor of the Journal of Geophysical Research (Geochemistry and Volcanology)-1996-1999

Research Advisor for the following students:

University of New Mexico:

- Anthony Sanchez

University of Wisconsin-Parkside:

- James Grimes
- Bill Stupak
- Jill Hartnell
- Ray Spangers
- Cliff Brandon

UNLV:

- Mills, James G., Jr., 1985, *The geology and geochemistry of volcanic and plutonic rocks in the Hoover Dam 7 1/2 minute quadrangle, Clark County, Nevada and Mohave County, Arizona [MS thesis]*: Las Vegas, University of Nevada, 119 p.

• Naumann, Terry R., 1987, Geology of the central Boulder Canyon quadrangle, Clark County, Nevada [MS thesis]: Las Vegas, University of Nevada, 68 p.

• Schmidt, Casey S., 1987, A mid-Miocene caldera in the central McCullough Mountains, Clark County, Nevada [MS thesis]: Las Vegas, University of Nevada, 78 p.

• Sewall, Angela J., 1988, Structure and geochemistry of the upper plate of the Saddle Island detachment, Lake Mead, Nevada [MS thesis]: Las Vegas, University of Nevada, 84 p.

• Rash, Kelly B., 1995, Geology and geochemistry of Tertiary volcanic rocks in the northern Reveille and southern Pancake Ranges, Nye County, Nevada [MS thesis]: Las Vegas, University of Nevada, 171 p.

• Dickson, Loretta D., 1997, Volcanology and geochemistry of Pliocene and Quaternary basalts on Citadel Mountain, Lunar Crater volcanic field, Pancake Range, Nevada [MS

Matt McKelvey, *Geology of the southern Reveille Range, Nevada* : [MS thesis]: Las Vegas, University of Nevada, 103 p..

Audrey Rager (Ph.D.), *Basalts, tectonics and Corona on Venus, How is important is plate tectonics* (work in progress).

Ashley Tibbetts (Ph.D.), *Geology of the Death Valley volcanic field* (work in progress).

Christi Emery, *Volcanology of the southern Quinn Canyon Range, central Nevada* (work in progress).

Racheal Johnsen, *Volcanology of two volcanic fields in SW Utah, implications for tectonics and mantle source* (work in progress).
Students who left UNLV before completing their degrees

- Jeff Nejedly
- Robert Yasek
- Tom Wickham
- Joe Blaylock
- Heather Putnam

Post-Doctoral Research Associates

- Jim Faulds (now a research scientist with the Nevada Bureau of Mines and Geology)
- Mark Martin (now a research fellow at MIT)
- Jim Mills (now an associate professor at DePauw University, Indiana)
- Tim Bradshaw (now a science advisor to the House of Lords, London)
- Gene Yogodzinski (now an assistant professor at the University of South Carolina)

Research Associates (Professional Staff with M.S. degrees)

- Dan Feuerbach
- Terry Naumann
- Alex Sánchez
- Shirley Morikowa
- Deb Keenan
- Denise Honn

PUBLICATIONS:

A. Journal Articles in refereed journals, symposium volumes and maps:

Regional Segmentation of the Basin and Range Province: Geological Society of America Special Paper 323, p. 127-148

Edited Volumes:

B. Abstracts:

17. **Smith, E.I., 1977**, Precambrian basement rocks of south-central Wisconsin: Programs and abstracts for the 3rd annual American Geophysical Union Midwest meeting, p. 11.

(NCREC), AZ-NV: Geological Society of America Abstracts with Programs, v. 29, no. 5, p. 53.

101. Druschke, Peter; Honn, Denise; McKelvey, Matt; Nastanski, Nicole; Rager, Audrey; Smith, E.I., and Belliveau, Robert, 2004, Volcanology of the northern Eldorado Mountains, Nevada: new evidence for the source of the tuff of Bridge Spring: Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 431.

C. Open File and Technical Reports

